Readersguide:

In his ‘Learning Journey’ of defining Asset & Maintenance Management, lecturer/Researcher Jan Stoker of SSAMM write his finding and insights during this journey. Started in 2013 with his research, one of his goals is to understand Asset & Maintenance Management within the ISO55000 framework. Currently, his main goal is to describe and define Asset Management 5.0 based on this article. Check the related article’s on this page. 

Version

Publication 8 January 2022

Updated 15 June 2023 ME integration

Updated 20 August 2023 IR-5.0 integration

 


 

With the insights of the draft version EN-17485; Maintenance within physical asset management – Framework for improving the value of the physical assets through their whole life cycle, figure one of this standard gives a inspiring visual of the links between other standards. A closer look of this figure leads to a significance of the “Asset Management BowTie’ developed by researcher Jan Stoker. In his approach the AM-BowTie represents his interpretation of figure one of the ISO55000. 

This article is a part of the book Sustainable Asset Management, First Edition. Click here for more information

Author: Ing. Jan Stoker MSc. MEng. 

 

Click to enlarge

The recently published standard EN 17485 introduces methods and procedures about maintenance within physical asset management for all the levels and functions of the organizations’ management, including corporate planning management, plant management, technical management, production management, financial management, asset management, maintenance management, and quality management. Further and maybe even greater benefits are now being found through improved credibility in the eyes of customers, regulators and other stakeholders. Physical asset management also results in much greater engagement and motivation of the workforce, and in more sustainable, continual improvement business processes. Physical asset management builds up the required link between maintenance management and the organizational strategic plan and gives direction to maintenance activities.

Risk Assessment methods, Click to Enlarge

Click To Enlarge
Click To Enlarge

 

The standards EN 16646 and EN 17485 build the bridge between ISO 5500x (Asset management system standards) and the EN maintenance standards. ISO 55001 states that organizations should determine e.g. the organizational context, requirements for the assets, decision criteria, strategic asset management plan and asset management plan (including maintenance). However, it does not describe how to do it. 

Asset Management BowTie Click to enlarge: See Body of thoughts AM-BowTie Click Here

Respectively, maintenance standards often introduce e.g. the concept of the required function or the concept of maintenance strategy, but do not explain how they have been determined. EN 17485 introduces a methodological framework which advises organizations to implement the requirements presented in ISO 55001. By doing this it creates the bridge between the several maintenance standards and ISO 5500x in order to give an applicable starting point to the more detailed documents for the specific sub-functions of maintenance (See AM-BowTie).

This insights, the Asset Management BowTie, can be added toward the Asset Management paradigm with the (Digital) Line of Sit. To add the BowTie principle, the body of thoughts of the EN-17485 can be incorporated in the Asset Management paradigm with the mentioned standards. Result is a deepened figure 1 of the ISO5500 completed with the Line(s) of Sights, the levels of information, Business, Risk Assessment and Asset & Maintenance going to decision making  in balancing Costs, Risks and Performance. The Asset Management BowTie show how standards can be uses as a reference framework. 

 

Integrating Maintenance Engineering activities in the life cycle

As described in the 17666, Maintenance Engineering activities are focused on assuring that an item fulfils its required functions in a safe, sustainable and cost-effective manner. The type of activity required changes through the lifespan of an item: initially directed at developing and documenting maintenance requirements, changing into delivering and optimizing item maintenance. Throughout the life cycle, maintenance engineering activity inputs to design and results shall be traceable and auditable, see more guidance on information, data management and documentation in ISO 55002 and EN 13460. The results from maintenance activities should follow a defined asset hierarchy approved by the relevant stakeholders.

 

The contribution of maintenance engineering to item design and utilization depends on the detail of the proposal, level within the asset hierarchy and the life cycle stage. Maintenance engineering should interact with all relevant disciplines in order to fulfil the stakeholder objectives. The extent of activities will also depend upon the benefit which can be derived and the degree of control the organization can exert.

Design and maintenance engineering inputs are influenced by internal and external factors to an organization such as: legislation, socio-economic conditions, technologies, technical condition of interrelated physical assets, logistics, competencies and the characteristics of the organization. The need to balance these factors in order to satisfy stakeholders may result in suboptimal maintainability and supportability.

During the different stages and substages communication between the project owners, the operational organization and the engineering organization is essential for establishment of requirements to meet stakeholder needs. The maintenance policy is the basis for maintenance engineering in the life cycle and shall be consistent with the overall organization policy and objectives.


This insights, the Asset Management BowTie, can be added toward the Asset Management paradigm with the (Digital) Line of Sit. To add the BowTie principle, the body of thoughts of the EN-17485 can be incorporated in the Asset Management paradigm with the mentioned standards. Result is a deepened figure 1 of the ISO5500 completed with the Line(s) of Sights, the levels of information, Business, Risk Assessment and Asset & Maintenance going to decision making  in balancing Costs, Risks and Performance. The Asset Management BowTie show how standards can be uses as a reference framework. 

Back to post: Click Here or follow Sustainable Asset Management


Reference Articles 

Industry 5.0 Related

  1. Maturity assessment for Industry 5.0: A review of existing maturity models
  2. Industry 5.0: Past, Present and Near Future
  3. IR5.0 Human-Centric underpinned with 2022 Industrial Maintenance study
  4. Human in the loop: Industry 4.0 vs. Industry 5.0: Co-existence, Transition, or a Hybrid
  5. Industry 5.0 further explained
  6. Industry 5.0 and Society 5.0: Comparison, complementation and co-evolution
  7. Outlook on human-centric manufacturing towards Industry 5.0
  8. Maintenance 5.0: Towards a Worker-in-the-Loop Framework for Resilient Smart Manufacturing
  9. Industry 5.0: Prospect and retrospect
  10. Industry 5.0 definitions
  11. Be informed…. we are already in the Industry 5.0 timeframe

IR4.0 & IR4.0 readiness

  1. An Industry 4.0 readiness Assessment tool
  2. Intelligent warehouse in Industry 4.0
  3. Maintenance Performance in the Age of Industry 4.0
  4. Simulating dynamic RUL based CBM scheduling
  5. Maintenance Analytics – The New Know in Maintenance
  6. Rethinking Maintenance Terminology for an Industry 4.0 Future
  7. Maintenance optimization in industry 4.0; Strategies, Information and the Reversed Data Pyramid
  8. An RUL-informed approach for Life Extension of high-value assets: Overview of LE practice
  9. Lean Maintenance 4.0: implementation for aviation industry
  10. Developing prescriptive maintenance strategies in the aviation industry
  11. Development of flexible Predictive Maintenance systems in the context of industry 4.0: the implementation framework

Digital Twin Related

  1. Reflection: Disruptive Innovation Asset & Maintenance Management
  2. Collecting Real-Time Data for Predictive Maintenance
  3. Lean Maintenance 4.0: implementation for aviation industry
  4. A digital twin-based decision analysis framework for operation and maintenance of tunnels
  5. Digital building twins and blockchain for performance-based (smart) contracts
  6. IoT for predictive assets monitoring and maintenance: An implementation strategy
  7. About auditing in the field of Asset Management
  8. A Digital Twin Design for Maintenance Optimization
  9. The difference between Machine Learning(ML) and Deep Learning (DP)
  10. Digital Twin Definitions: a time perspective
  11. Definition Digital Twin
  12. Approach for a Holistic Predictive Maintenance Strategy by Incorporating a Digital Twin
  13. Data-driven failure mode and effect analysis (FMEA) to enhance maintenance planning
  14. Advances of Digital Twins for Predictive Maintenance
  15. The 250 classifications of Digital Twin technology

Maintenance Management

  1. Decision-based framework for Predictive Maintenance Technique selection in Industry 4.0
  2. Data-driven failure mode and effect analysis (FMEA) to enhance maintenance planning
  3. Recent advances and trends of predictive maintenance from data driven machine prognostics perspective
  4. Data-driven decision-making for equipment maintenance: Data-driven RCM
  5. Toward cognitive predictive maintenance: A survey of graph-based approaches
  6. A deep learning predictive model for selective maintenance optimization
  7. Inspection schedule for prognostics with uncertainty management
  8. Development of Digital Twin for Intelligent Maintenance of Civil Infrastructure
  9. Risk Based Inspection Framework part of evolutions in Maintenance Management; Framework and Process
  10. KSPMI: A Knowledge-based System for Predictive Maintenance in Industry 4.0
  11. Sharping the mind: Find The Sweet spot
  12. The Bathtub Curve Fallacy
  13. The framework for data-driven maintenance planning and problem-solving in maintenance communities
  14. The Maintenance Body of Knowledge
  15. Decision Framework for Predictive Maintenance Method Selection
  16. Maintenance Engineering defined
  17. The Maintenance 5.0 Framework
  18. The Maintenance 5.0 Cycle

Interpretation Articles

  1. Line of Sight: Asset Management in the aligned timeframe
  2. Interpretation Figure 1 ISO55000
  3. The elephant in the room
  4. Asset & Maintenance Management amidst the Industry 5.0 timeframe
  5. Revised A&MM The Big Picture
  6. Article IR5.0 Human-Centric
  7. Explaining Predictive Maintenance using the KISS-Principle
  8. Asset Management 5.0: Balancing Risk, Performance and Value with IR5.0
  9. Food for Thoughts: ChatGPT in the field of Asset & Maintenance Management.

Additional Pages to consult

  1. The Maintenance Engineer
  2. The Maintenance Manager
  3. The Asset Manager
  4. Industry 5.0
  5. The EFNMS-ETC European Training Committee
 

Tags: ,